先看代码
package com.zyt.jvmbook;
public class Girl extends Person{
public Girl() {
int a;
}
@Override
public void sayHello() {
System.out.println("girl say hello");
}
private void sayHi(){
System.out.println("hellow");
}
public static void main(String[] args) {
Person p = new Girl();
p.sayHello();
Girl g=new Girl();
g.sayHello();
g.sayHi();
}
}
查看编译后的内容
0 new #6 <com/zyt/jvmbook/Girl>
3 dup
4 invokespecial #7 <com/zyt/jvmbook/Girl.<init>>
7 astore_1
8 aload_1
9 invokevirtual #8 <com/zyt/jvmbook/Person.sayHello>
12 new #6 <com/zyt/jvmbook/Girl>
15 dup
16 invokespecial #7 <com/zyt/jvmbook/Girl.<init>>
19 astore_2
20 aload_2
21 invokevirtual #9 <com/zyt/jvmbook/Girl.sayHello>
24 aload_2
25 invokespecial #10 <com/zyt/jvmbook/Girl.sayHi>
28 return
看这个,对invoke孙ecial #7的解读
这个可真是费劲死了 弄了我两天,现在才搞清楚
之前的dup指令分析了是复制oop对象,那么此时操作数栈中是什么呢
///////高地址
oop
oop
//低地址
那么贴出invokespecail指令
----------------------------------------------------------------------
invokespecial 183 invokespecial [0x0000000002cf1da0, 0x0000000002cf2040] 672 bytes
0x0000000002cf1da0: push %rax
0x0000000002cf1da1: jmpq 0x0000000002cf1dd0
0x0000000002cf1da6: sub $0x8,%rsp
0x0000000002cf1daa: vmovss %xmm0,(%rsp)
0x0000000002cf1daf: jmpq 0x0000000002cf1dd0
0x0000000002cf1db4: sub $0x10,%rsp
0x0000000002cf1db8: vmovsd %xmm0,(%rsp)
0x0000000002cf1dbd: jmpq 0x0000000002cf1dd0
0x0000000002cf1dc2: sub $0x10,%rsp
0x0000000002cf1dc6: mov %rax,(%rsp)
0x0000000002cf1dca: jmpq 0x0000000002cf1dd0
0x0000000002cf1dcf: push %rax
开始执行.有栈顶缓存,即rax中有值
// void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index,
// int bcp_offset,
// size_t index_size) {
// assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
// if (index_size == sizeof(u2)) {
// load_unsigned_short(index, Address(r13, bcp_offset));}
0x0000000002cf1dd0: mov %r13,-0x38(%rbp) //bcp的地址
0x0000000002cf1dd4: movzwl 0x1(%r13),%edx
0x0000000002cf1dd9: mov -0x28(%rbp),%rcx 将cache放到rcx
0x0000000002cf1ddd: shl $0x2,%edx
//movl(bytecode, Address(cache, index, Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()));
//那么cache就是rcx,index就是rdx
0x0000000002cf1de0: mov 0x10(%rcx,%rdx,8),%ebx 取得cache的_indices的, 0x10 + rcx + rdx*8
// const int shift_count = (1 + byte_no) * BitsPerByte;
// shrl(bytecode, shift_count);
0x0000000002cf1de4: shr $0x10,%ebx
0x0000000002cf1de7: and $0xff,%ebx
0x0000000002cf1ded: cmp $0xb7,%ebx
0x0000000002cf1df3: je 0x0000000002cf1e9a
//验证时否为0xb7
//在invokevirtual、invokespecial等字节码指令对应的汇编片段中,如果_indices中的b2或b1不为字节码指令的操作码,
// 说明方法还没有连接,需要调用InterpreterRuntime::resolve_invoke()方法生成ConstantPoolCacheEntry。
---解析ConstantPoolCacheEntry---开始
0x0000000002cf1df9: mov $0xb7,%ebx
0x0000000002cf1dfe: callq 0x0000000002cf1e08
0x0000000002cf1e03: jmpq 0x0000000002cf1e8e
0x0000000002cf1e08: mov %rbx,%rdx
0x0000000002cf1e0b: lea 0x8(%rsp),%rax
0x0000000002cf1e10: mov %r13,-0x38(%rbp)
0x0000000002cf1e14: mov %r15,%rcx
0x0000000002cf1e17: mov %rbp,0x1e8(%r15)
0x0000000002cf1e1e: mov %rax,0x1d8(%r15)
0x0000000002cf1e25: sub $0x20,%rsp
0x0000000002cf1e29: test $0xf,%esp
0x0000000002cf1e2f: je 0x0000000002cf1e47
0x0000000002cf1e35: sub $0x8,%rsp
0x0000000002cf1e39: callq 0x000000005449a3c0
0x0000000002cf1e3e: add $0x8,%rsp
0x0000000002cf1e42: jmpq 0x0000000002cf1e4c
0x0000000002cf1e47: callq 0x000000005449a3c0
0x0000000002cf1e4c: add $0x20,%rsp
0x0000000002cf1e50: movabs $0x0,%r10
0x0000000002cf1e5a: mov %r10,0x1d8(%r15)
0x0000000002cf1e61: movabs $0x0,%r10
0x0000000002cf1e6b: mov %r10,0x1e8(%r15)
0x0000000002cf1e72: cmpq $0x0,0x8(%r15)
0x0000000002cf1e7a: je 0x0000000002cf1e85
0x0000000002cf1e80: jmpq 0x0000000002cd07e0
0x0000000002cf1e85: mov -0x38(%rbp),%r13
0x0000000002cf1e89: mov -0x30(%rbp),%r14
0x0000000002cf1e8d: retq
0x0000000002cf1e8e: movzwl 0x1(%r13),%edx
0x0000000002cf1e93: mov -0x28(%rbp),%rcx
0x0000000002cf1e97: shl $0x2,%edx
---解析ConstantPoolCacheEntry---完成
//__ movptr(method, Address(cache, index, Address::times_ptr, method_offset));
//method_offset=24,取得method
0x0000000002cf1e9a: mov 0x18(%rcx,%rdx,8),%rbx
// __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset));
//取得flag
//取得flag
0x0000000002cf1e9f: mov 0x28(%rcx,%rdx,8),%edx
// if (load_receiver) {
// __ movl(recv, flags);
0x0000000002cf1ea3: mov %edx,%ecx
// __ andl(recv, ConstantPoolCacheEntry::parameter_size_mask);
0x0000000002cf1ea5: and $0xff,%ecx
// __ movptr(recv, recv_addr);
0x0000000002cf1eab: mov -0x8(%rsp,%rcx,8),%rcx //-0x8 + rsp+ 8*rcx to rcx;
// // compute return type
//获取tosState
(gdb) p/x _invoke_return_entry
$1 = {0x7f1a6d006e80, 0x7f1a6d006f50, 0x7f1a6d007020,
0x7f1a6d0070f0, 0x7f1a6d0071c0, 0x7f1a6d007290,
0x7f1a6d007360, 0x7f1a6d007430, 0x7f1a6d007500}
0x0000000002cf1eb0: shr $0x1c,%edx
0x0000000002cf1eb3: movabs $0x54bcbba0,%r10 //_invoke_return_entry
0x0000000002cf1ebd: mov (%r10,%rdx,8),%rdx 获取返回entry
// __ push(flags);// push return address
0x0000000002cf1ec1: push %rdx
0x0000000002cf1ec2: cmp (%rcx),%rax //cache,
// movptr(mdp, Address(rbp, frame::interpreter_frame_mdx_offset * wordSize));
// testptr(mdp, mdp);
// jcc(Assembler::zero, zero_continue);
0x0000000002cf1ec5: mov -0x20(%rbp),%rax //methodData
0x0000000002cf1ec9: test %rax,%rax
0x0000000002cf1ecc: je 0x0000000002cf1ee4
// increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
//
// // The method data pointer needs to be updated to reflect the new target.
// update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
// bind(profile_continue);
0x0000000002cf1ed2: addq $0x1,0x8(%rax)
0x0000000002cf1ed7: sbbq $0x0,0x8(%rax)
0x0000000002cf1edc: add $0x10,%rax
0x0000000002cf1ee0: mov %rax,-0x20(%rbp)
0x0000000002cf1ee4: mov -0x20(%rbp),%rax
0x0000000002cf1ee8: test %rax,%rax
0x0000000002cf1eeb: je 0x0000000002cf2020
0x0000000002cf1ef1: cmpb $0xa,-0x10(%rax)
0x0000000002cf1ef5: jne 0x0000000002cf2020
0x0000000002cf1efb: add $0x8,%rax
0x0000000002cf1eff: mov -0x8(%rax),%r13
0x0000000002cf1f03: sub $0x0,%r13d
0x0000000002cf1f07: cmp $0x2,%r13d
0x0000000002cf1f0b: jl 0x0000000002cf2015
0x0000000002cf1f11: mov 0x8(%rbx),%r13
0x0000000002cf1f15: movzwl 0x2a(%r13),%r13d
0x0000000002cf1f1a: sub (%rax),%r13
0x0000000002cf1f1d: sub $0x1,%r13d
0x0000000002cf1f21: mov 0x8(%rsp,%r13,8),%r13
0x0000000002cf1f26: test %r13,%r13
0x0000000002cf1f29: jne 0x0000000002cf1f35
0x0000000002cf1f2b: orq $0x1,0x8(%rax)
0x0000000002cf1f33: jmp 0x0000000002cf1f82
0x0000000002cf1f35: mov 0x8(%r13),%r13d
0x0000000002cf1f39: shl $0x3,%r13
0x0000000002cf1f3d: xor 0x8(%rax),%r13
0x0000000002cf1f41: test $0xfffffffffffffffc,%r13
0x0000000002cf1f48: je 0x0000000002cf1f82
0x0000000002cf1f4a: test $0x2,%r13
0x0000000002cf1f51: jne 0x0000000002cf1f82
0x0000000002cf1f53: cmpq $0x0,0x8(%rax)
0x0000000002cf1f5b: je 0x0000000002cf1f7e
0x0000000002cf1f5d: cmpq $0x1,0x8(%rax)
0x0000000002cf1f65: je 0x0000000002cf1f7e
0x0000000002cf1f67: xor 0x8(%rax),%r13
0x0000000002cf1f6b: test $0xfffffffffffffffc,%r13
0x0000000002cf1f72: je 0x0000000002cf1f82
0x0000000002cf1f74: orq $0x2,0x8(%rax)
0x0000000002cf1f7c: jmp 0x0000000002cf1f82
0x0000000002cf1f7e: mov %r13,0x8(%rax)
0x0000000002cf1f82: add $0x10,%rax
0x0000000002cf1f86: mov -0x18(%rax),%r13
0x0000000002cf1f8a: sub $0x2,%r13d
0x0000000002cf1f8e: cmp $0x2,%r13d
0x0000000002cf1f92: jl 0x0000000002cf2015
0x0000000002cf1f98: mov 0x8(%rbx),%r13
0x0000000002cf1f9c: movzwl 0x2a(%r13),%r13d
0x0000000002cf1fa1: sub (%rax),%r13
0x0000000002cf1fa4: sub $0x1,%r13d
0x0000000002cf1fa8: mov 0x8(%rsp,%r13,8),%r13
0x0000000002cf1fad: test %r13,%r13
0x0000000002cf1fb0: jne 0x0000000002cf1fbc
0x0000000002cf1fb2: orq $0x1,0x8(%rax)
0x0000000002cf1fba: jmp 0x0000000002cf2009
0x0000000002cf1fbc: mov 0x8(%r13),%r13d
0x0000000002cf1fc0: shl $0x3,%r13
0x0000000002cf1fc4: xor 0x8(%rax),%r13
0x0000000002cf1fc8: test $0xfffffffffffffffc,%r13
0x0000000002cf1fcf: je 0x0000000002cf2009
0x0000000002cf1fd1: test $0x2,%r13
0x0000000002cf1fd8: jne 0x0000000002cf2009
0x0000000002cf1fda: cmpq $0x0,0x8(%rax)
0x0000000002cf1fe2: je 0x0000000002cf2005
0x0000000002cf1fe4: cmpq $0x1,0x8(%rax)
0x0000000002cf1fec: je 0x0000000002cf2005
0x0000000002cf1fee: xor 0x8(%rax),%r13
0x0000000002cf1ff2: test $0xfffffffffffffffc,%r13
0x0000000002cf1ff9: je 0x0000000002cf2009
0x0000000002cf1ffb: orq $0x2,0x8(%rax)
0x0000000002cf2003: jmp 0x0000000002cf2009
0x0000000002cf2005: mov %r13,0x8(%rax)
0x0000000002cf2009: add $0x10,%rax
0x0000000002cf200d: mov -0x28(%rax),%r13
0x0000000002cf2011: sub $0x4,%r13d
0x0000000002cf2015: shl $0x3,%r13d
0x0000000002cf2019: add %r13,%rax
0x0000000002cf201c: mov %rax,-0x20(%rbp)
void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
// set sender sp
lea(r13, Address(rsp, wordSize));
// record last_sp
movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), r13);
}
0x0000000002cf2020: lea 0x8(%rsp),%r13
0x0000000002cf2025: mov %r13,-0x10(%rbp)
jmp(Address(method, Method::from_interpreted_offset()));
//jump到这里 volatile address _from_interpreted_entry; // Cache of _code ? _adapter->i2c_entry() : _i2i_entry
0x0000000002cf2029: jmpq *0x50(%rbx)
0x0000000002cf202c: nopl 0x0(%rax)
0x0000000002cf2030: add %al,(%rax)
0x0000000002cf2032: add %al,(%rax)
0x0000000002cf2034: add %al,(%rax)
0x0000000002cf2036: add %al,(%rax)
0x0000000002cf2038: add %al,(%rax)
0x0000000002cf203a: add %al,(%rax)
0x0000000002cf203c: add %al,(%rax)
0x0000000002cf203e: add %al,(%rax)
----------------------------------------------------------------------
对应的代码为
void TemplateTable::invokespecial(int byte_no) {
transition(vtos, vtos);
assert(byte_no == f1_byte, "use this argument");
prepare_invoke(byte_no, rbx, noreg, // get f1 Method*
rcx); // get receiver also for null check
__ verify_oop(rcx);
__ null_check(rcx);
// do the call
__ profile_call(rax);
__ profile_arguments_type(rax, rbx, r13, false);
__ jump_from_interpreted(rbx, rax);
}
void TemplateTable::prepare_invoke(int byte_no,
Register method, // linked method (or i-klass)
Register index, // itable index, MethodType, etc.
Register recv, // if caller wants to see it
Register flags // if caller wants to test it
) {
// determine flags
const Bytecodes::Code code = bytecode();
const bool is_invokeinterface = code == Bytecodes::_invokeinterface;
const bool is_invokedynamic = code == Bytecodes::_invokedynamic;
const bool is_invokehandle = code == Bytecodes::_invokehandle;
const bool is_invokevirtual = code == Bytecodes::_invokevirtual;
const bool is_invokespecial = code == Bytecodes::_invokespecial;
const bool load_receiver = (recv != noreg);//true
const bool save_flags = (flags != noreg);//false
assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
assert(save_flags == (is_invokeinterface || is_invokevirtual), "need flags for vfinal");
assert(flags == noreg || flags == rdx, "");
assert(recv == noreg || recv == rcx, "");
// setup registers & access constant pool cache\
//recv=rcx,flags=noreg
if (recv == noreg) recv = rcx;//
if (flags == noreg) flags = rdx;
assert_different_registers(method, index, recv, flags);
// save 'interpreter return address'
__ save_bcp();
load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
// maybe push appendix to arguments (just before return address)
if (is_invokedynamic || is_invokehandle) {
Label L_no_push;
__ testl(flags, (1 << ConstantPoolCacheEntry::has_appendix_shift));
__ jcc(Assembler::zero, L_no_push);
// Push the appendix as a trailing parameter.
// This must be done before we get the receiver,
// since the parameter_size includes it.
__ push(rbx);
__ mov(rbx, index);
assert(ConstantPoolCacheEntry::_indy_resolved_references_appendix_offset == 0, "appendix expected at index+0");
__ load_resolved_reference_at_index(index, rbx);
__ pop(rbx);
__ push(index); // push appendix (MethodType, CallSite, etc.)
__ bind(L_no_push);
}
// load receiver if needed (after appendix is pushed so parameter size is correct)
// Note: no return address pushed yet
if (load_receiver) {//true
__ movl(recv, flags);
__ andl(recv, ConstantPoolCacheEntry::parameter_size_mask);
const int no_return_pc_pushed_yet = -1; // argument slot correction before we push return address
const int receiver_is_at_end = -1; // back off one slot to get receiver
Address recv_addr = __ argument_address(recv, no_return_pc_pushed_yet + receiver_is_at_end);
__ movptr(recv, recv_addr);
__ verify_oop(recv);
}
if (save_flags) {//false
__ movl(r13, flags);
}
// compute return type
__ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
// Make sure we don't need to mask flags after the above shift
ConstantPoolCacheEntry::verify_tos_state_shift();
// load return address
{
const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
ExternalAddress table(table_addr);
__ lea(rscratch1, table);
__ movptr(flags, Address(rscratch1, flags, Address::times_ptr));
}
// push return address
__ push(flags);
// Restore flags value from the constant pool cache, and restore rsi
// for later null checks. r13 is the bytecode pointer
if (save_flags) {
__ movl(flags, r13);
__ restore_bcp();
}
}
//
void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index,
int bcp_offset,
size_t index_size) {
assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
if (index_size == sizeof(u2)) {
load_unsigned_short(index, Address(r13, bcp_offset));}
//返回
void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache,
Register index,
int bcp_offset,
size_t index_size) {
assert_different_registers(cache, index);
get_cache_index_at_bcp(index, bcp_offset, index_size); //将index返回值,即为index是bcp的地址的invoke指令的操作数
movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));//将cache放入cache这个变量
assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
// convert from field index to ConstantPoolCacheEntry index
assert(exact_log2(in_words(ConstantPoolCacheEntry::size())) == 2, "else change next line");
shll(index, 2);
}
void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache,
Register index,
Register bytecode,
int byte_no,
int bcp_offset,
size_t index_size) {
get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size);//上边的执行到这里
// We use a 32-bit load here since the layout of 64-bit words on
// little-endian machines allow us that.
//cache 就是constanpoolcache,那么这个操作就是取得方法重写过后的方法所在常量池的序号index
movl(bytecode, Address(cache, index, Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()));
const int shift_count = (1 + byte_no) * BitsPerByte;
assert((byte_no == TemplateTable::f1_byte && shift_count == ConstantPoolCacheEntry::bytecode_1_shift) ||
(byte_no == TemplateTable::f2_byte && shift_count == ConstantPoolCacheEntry::bytecode_2_shift),
"correct shift count");
shrl(bytecode, shift_count);//右移16为
assert(ConstantPoolCacheEntry::bytecode_1_mask == ConstantPoolCacheEntry::bytecode_2_mask, "common mask");
andl(bytecode, ConstantPoolCacheEntry::bytecode_1_mask);
}
-------
看主要的逻辑,只有一个push,这个具体的和hsdb对不上,就先不追细节了
// __ push(flags);// push return address
0x0000000002cf1ec1: push %rdx
接着节点是
jmp(Address(method, Method::from_interpreted_offset()));
//jump到这里 volatile address _from_interpreted_entry; // Cache of _code ? _adapter->i2c_entry() : _i2i_entry
0x0000000002cf2029: jmpq *0x50(%rbx)
就是跳转到了method方法的_from_interpreted_entry
这个怎么来的呢?这个是在方法链接从时候设置的
void InstanceKlass::link_methods(TRAPS) {
int len = methods()->length();
for (int i = len-1; i >= 0; i--) {
methodHandle m(THREAD, methods()->at(i));
// Set up method entry points for compiler and interpreter .
m->link_method(m, CHECK);
// This is for JVMTI and unrelated to relocator but the last thing we do
#ifdef ASSERT
if (StressMethodComparator) {
ResourceMark rm(THREAD);
static int nmc = 0;
for (int j = i; j >= 0 && j >= i-4; j--) {
if ((++nmc % 1000) == 0) tty->print_cr("Have run MethodComparator %d times...", nmc);
bool z = MethodComparator::methods_EMCP(m(),
methods()->at(j));
if (j == i && !z) {
tty->print("MethodComparator FAIL: "); m->print(); m->print_codes();
assert(z, "method must compare equal to itself");
}
}
}
#endif //ASSERT
}
}
还有
// Called when the method_holder is getting linked. Setup entrypoints so the method
// is ready to be called from interpreter, compiler, and vtables.
void Method::link_method(methodHandle h_method, TRAPS) {
// If the code cache is full, we may reenter this function for the
// leftover methods that weren't linked.
if (_i2i_entry != NULL) return;
assert(_adapter == NULL, "init'd to NULL" );
assert( _code == NULL, "nothing compiled yet" );
// Setup interpreter entrypoint
assert(this == h_method(), "wrong h_method()" );
address entry = Interpreter::entry_for_method(h_method);
assert(entry != NULL, "interpreter entry must be non-null");
// Sets both _i2i_entry and _from_interpreted_entry
set_interpreter_entry(entry);
// Don't overwrite already registered native entries.
if (is_native() && !has_native_function()) {
set_native_function(
SharedRuntime::native_method_throw_unsatisfied_link_error_entry(),
!native_bind_event_is_interesting);
}
// Setup compiler entrypoint. This is made eagerly, so we do not need
// special handling of vtables. An alternative is to make adapters more
// lazily by calling make_adapter() from from_compiled_entry() for the
// normal calls. For vtable calls life gets more complicated. When a
// call-site goes mega-morphic we need adapters in all methods which can be
// called from the vtable. We need adapters on such methods that get loaded
// later. Ditto for mega-morphic itable calls. If this proves to be a
// problem we'll make these lazily later.
(void) make_adapters(h_method, CHECK);
// ONLY USE the h_method now as make_adapter may have blocked
}
//以上是设置
static address entry_for_kind(MethodKind k)
{ assert(0 <= k && k < number_of_method_entries, "illegal kind"); return _entry_table[k]; }
static address entry_for_method(methodHandle m) { return entry_for_kind(method_kind(m)); }
设置
void set_interpreter_entry(address entry) { _i2i_entry = entry; _from_interpreted_entry = entry; }
设置之前的method内容
方法的执行过程
enum MethodKind {
zerolocals, // method needs locals initialization
zerolocals_synchronized, // method needs locals initialization & is synchronized
native, // native method
native_synchronized, // native method & is synchronized
empty, // empty method (code: _return)
accessor, // accessor method (code: _aload_0, _getfield, _(a|i)return)
abstract, // abstract method (throws an AbstractMethodException)
method_handle_invoke_FIRST, // java.lang.invoke.MethodHandles::invokeExact, etc.
method_handle_invoke_LAST = (method_handle_invoke_FIRST
+ (vmIntrinsics::LAST_MH_SIG_POLY
- vmIntrinsics::FIRST_MH_SIG_POLY)),
java_lang_math_sin, // implementation of java.lang.Math.sin (x)
java_lang_math_cos, // implementation of java.lang.Math.cos (x)
java_lang_math_tan, // implementation of java.lang.Math.tan (x)
java_lang_math_abs, // implementation of java.lang.Math.abs (x)
java_lang_math_sqrt, // implementation of java.lang.Math.sqrt (x)
java_lang_math_log, // implementation of java.lang.Math.log (x)
java_lang_math_log10, // implementation of java.lang.Math.log10 (x)
java_lang_math_pow, // implementation of java.lang.Math.pow (x,y)
java_lang_math_exp, // implementation of java.lang.Math.exp (x)
java_lang_ref_reference_get, // implementation of java.lang.ref.Reference.get()
java_util_zip_CRC32_update, // implementation of java.util.zip.CRC32.update()
java_util_zip_CRC32_updateBytes, // implementation of java.util.zip.CRC32.updateBytes()
java_util_zip_CRC32_updateByteBuffer, // implementation of java.util.zip.CRC32.updateByteBuffer()
number_of_method_entries, //26
invalid = -1
};
gdb) p _entry_table
$7 = {0x7f671501e2e0 "H\213S\020\017\267J*\017\267R(+с\372\366\001",
0x7f671501f060 "H\213S\020\017\267J*\017\267R(+с\372\366\001",
0x7f6715028d40 "H\213K\020\017\267I*XL\215t\314\370h",
0x7f671502a620 "H\213K\020\017\267I*XL\215t\314\370h",
0x7f6715020180 "H\213S\020\017\267J*\017\267R(+с\372\366\001",
0x7f6715020f00 "H\213S\020\017\267J*\017\267R(+с\372\366\001",
0x7f6715021c80 "H\213e\300H\307", <incomplete sequence \360>,
0x7f6715021c80 "H\213e\300H\307", <incomplete sequence \360>,
0x7f6715021c80 "H\213e\300H\307", <incomplete sequence \360>,
0x7f6715021c80 "H\213e\300H\307", <incomplete sequence \360>,
0x7f6715021c80 "H\213e\300H\307", <incomplete sequence \360>,
0x7f6715021c80 "H\213e\300H\307", <incomplete sequence \360>,
0x7f6715021c80 "H\213e\300H\307", <incomplete sequence \360>,
0x7f6715021f80 "\335D$\b\335\005V\200\232\025\331\301\331\341\337\351\335\300\331\367\017\207\a",
0x7f6715022300 "\335D$\b\335\005\326|\232\025\331\301\331\341\337\351\335\300\331\367\017\207\a",
0x7f6715022680 "\335D$\b\335\005Vy\232\025\331\301\331\341\337\351\335\300\331\367\017\207\t",
0x7f6715022a00 "\335D$\b\331\341H\203\354\020\335\034$\305\373\020\004$H\203\304\020XI\213\345\377\340\220\220\220\220@",
0x7f6715022a40 "\305\373QD$\bXI\213\345\377\340\220\220\220\220\314\314\314\314\314\314\314\314\314\314\314\314\314\314\314\314@",
0x7f6715022a80 "\335D$\b\331\355\331\311\331\361H\203\354\020\335\034$\305\373\020\004$H\203\304\020XI\213\345\377\340@",
0x7f6715022ac0 "\335D$\b\331\354\331\311\331\361H\203\354\020\335\034$\305\373\020\004$H\203\304\020XI\213\345\377\340\340\003",
0x7f6715022ee0 "\335D$\b\335D$\030\331\356\337\351\017\207}",
0x7f6715022b00 "\335D$\b\331\300H\203\354\b\233\331<$\213\004$\201", <incomplete sequence \310>,
0x7f6715023420 "H\213S\020\017\267J*\017\267R(+с\372\366\001",
0x7f67150241a0 "\201=6C\001\026",
0x7f6715025ac0 "\201=\026*\001\026",
0x7f6715027400 "\201=\326\020\001\026"}
(gdb) p k
$3 = AbstractInterpreter::zerolocals
(gdb) p/d k
$4 = 0
三层关系
-------------第一层-----------------
(gdb) p h_method._value
$7 = (Method *) 0x7f2908a13938
(gdb) p * h_method._value
$8 = (Method) {
<Metadata> = {
<MetaspaceObj> = {<No data fields>},
members of Metadata:
_vptr.Metadata = 0x7f291fcf1b90 <vtable for Method+16>,
_valid = 0
},
members of Method:
_constMethod = 0x7f2908a138c0,
_method_data = 0x0,
_method_counters = 0x0,
_access_flags = {
_flags = 138
},
_vtable_index = -3,
_method_size = 12,
_intrinsic_id = 0 '\000',
_jfr_towrite = 0 '\000',
_caller_sensitive = 0 '\000',
_force_inline = 0 '\000',
_hidden = 0 '\000',
_dont_inline = 0 '\000',
_compiled_invocation_count = 0,
_i2i_entry = 0x0,
_adapter = 0x0,
_from_compiled_entry = 0x0,
_code = 0x0,
_from_interpreted_entry = 0x0,
static extra_stack_entries_for_jsr292 = 1
}
-------------第二层-----------------
(gdb) p *h_method._value._constMethod
$10 = {
<MetaspaceObj> = {<No data fields>},
members of ConstMethod:
_fingerprint = 9223372036854775808,
_constants = 0x7f2908a110e0,
_stackmap_data = 0x0,
_constMethod_size = 15,
_flags = 5,
_code_size = 22,
_name_index = 330,
_signature_index = 331,
_method_idnum = 27,
_max_stack = 2,
_max_locals = 3,
_size_of_parameters = 2,
static MAX_IDNUM = 65534,
static UNSET_IDNUM = 65535
}
-------------第三层-----------------
(gdb) p *h_method._value._constMethod._constants
$9 = (ConstantPool) {
<Metadata> = {
<MetaspaceObj> = {<No data fields>},
members of Metadata:
_vptr.Metadata = 0x7f291fce1070 <vtable for ConstantPool+16>,
_valid = 0
},
members of ConstantPool:
_tags = 0x7f2908a10db0,
_cache = 0x7f2908a14e30,
_pool_holder = 0x100038f38,
_operands = 0x0,
_resolved_references = 0x7f29180e0d60,
_reference_map = 0x7f2908a15dc0,
_flags = 0,
_length = 809,
_saved = {
_resolved_reference_length = 0,
_version = 0
},
_lock = 0x7f29181535c8
}
查看自己写的Test类
(gdb) p * m._value
$15 = (Method) {
<Metadata> = {
<MetaspaceObj> = {<No data fields>},
members of Metadata:
_vptr.Metadata = 0x7f291fcf1b90 <vtable for Method+16>,
_valid = 0
},
members of Method:
_constMethod = 0x7f2908c00588,
_method_data = 0x0,
_method_counters = 0x0,
_access_flags = {
_flags = 9
},
_vtable_index = -3,
_method_size = 12,
_intrinsic_id = 0 '\000',
_jfr_towrite = 0 '\000',
_caller_sensitive = 0 '\000',
_force_inline = 0 '\000',
_hidden = 0 '\000',
_dont_inline = 0 '\000',
_compiled_invocation_count = 0,
_i2i_entry = 0x0,
_adapter = 0x0,
_from_compiled_entry = 0x0,
_code = 0x0,
_from_interpreted_entry = 0x0,
static extra_stack_entries_for_jsr292 = 1
}
(gdb) p * m._value._constMethod
$16 = {
<MetaspaceObj> = {<No data fields>},
members of ConstMethod:
_fingerprint = 9223372036854775808,
_constants = 0x7f2908c00080,
_stackmap_data = 0x7f2908c006d8,
_constMethod_size = 30,
_flags = 5,
_code_size = 81,
_name_index = 29,
_signature_index = 30,
_method_idnum = 3,
_max_stack = 4,
_max_locals = 8,
_size_of_parameters = 1,
static MAX_IDNUM = 65534,
static UNSET_IDNUM = 65535
}
这个是_name_index = 29, 29 是main方法
(gdb) p k
$18 = AbstractInterpreter::zerolocals
_entry_table[k] =0x7f290901e2e0
set_interpreter_entry(entry);设置;之前
(gdb) p * this
$21 = (Method) {
<Metadata> = {
<MetaspaceObj> = {<No data fields>},
members of Metadata:
_vptr.Metadata = 0x7f291fcf1b90 <vtable for Method+16>,
_valid = 0
},
members of Method:
_constMethod = 0x7f2908c00588,
_method_data = 0x0,
_method_counters = 0x0,
_access_flags = {
_flags = 9
},
_vtable_index = -3,
_method_size = 12,
_intrinsic_id = 0 '\000',
_jfr_towrite = 0 '\000',
_caller_sensitive = 0 '\000',
_force_inline = 0 '\000',
_hidden = 0 '\000',
_dont_inline = 0 '\000',
_compiled_invocation_count = 0,
_i2i_entry = 0x0,
_adapter = 0x0,
_from_compiled_entry = 0x0,
_code = 0x0,
_from_interpreted_entry = 0x0,
static extra_stack_entries_for_jsr292 = 1
}
设置之后
(gdb) p * this
$23 = (Method) {
<Metadata> = {
<MetaspaceObj> = {<No data fields>},
members of Metadata:
_vptr.Metadata = 0x7f291fcf1b90 <vtable for Method+16>,
_valid = 0
},
members of Method:
_constMethod = 0x7f2908c00588,
_method_data = 0x0,
_method_counters = 0x0,
_access_flags = {
_flags = 9
},
_vtable_index = -3,
_method_size = 12,
_intrinsic_id = 0 '\000',
_jfr_towrite = 0 '\000',
_caller_sensitive = 0 '\000',
_force_inline = 0 '\000',
_hidden = 0 '\000',
_dont_inline = 0 '\000',
_compiled_invocation_count = 0,
_i2i_entry = 0x7f290901e2e0 "H\213S\020\017\267J*\017\267R(+с\372\366\001", //设置了这个
_adapter = 0x0,
_from_compiled_entry = 0x0,
_code = 0x0,
_from_interpreted_entry = 0x7f290901e2e0 "H\213S\020\017\267J*\017\267R(+с\372\366\001",//设置了这个
static extra_stack_entries_for_jsr292 = 1
}
address Method::make_adapters(methodHandle mh, TRAPS) {
// Adapters for compiled code are made eagerly here. They are fairly
// small (generally < 100 bytes) and quick to make (and cached and shared)
// so making them eagerly shouldn't be too expensive.
AdapterHandlerEntry* adapter = AdapterHandlerLibrary::get_adapter(mh);
if (adapter == NULL ) {
THROW_MSG_NULL(vmSymbols::java_lang_VirtualMachineError(), "out of space in CodeCache for adapters");
}
mh->set_adapter_entry(adapter);
mh->_from_compiled_entry = adapter->get_c2i_entry();
return adapter->get_c2i_entry();
}
查看adapter
$31 = (AdapterHandlerEntry *) 0x7f29180aee10
(gdb) x/8xg adapter
0x7f29180aee10: 0xf1f1f1f1f1f1f1f1 0xf1f1f1f1b0000000
0x7f29180aee20: 0x0000000000000000 0x00007f2918087c98 //第一个成员变量_fingerprint
0x7f29180aee30: 0x00007f2909106ae0 0x00007f2909106bf4 c2i
0x7f29180aee40: 0x00007f2909106bc7 0x0000000000000000
(gdb) p mh->_from_compiled_entry
$30 = (volatile address) 0x7f2909106bf4 "H\201{P"
(gdb) x/120i 0x00007f2909106ae0
0x7f2909106ae0: mov (%rsp),%rax
0x7f2909106ae4: movabs $0x7f29090053e0,%r11
0x7f2909106aee: cmp %r11,%rax
0x7f2909106af1: jbe 0x7f2909106b0a
0x7f2909106af7: movabs $0x7f29091053e0,%r11
0x7f2909106b01: cmp %r11,%rax
0x7f2909106b04: jb 0x7f2909106ba7
0x7f2909106b0a: movabs $0x7f2909000420,%r11
0x7f2909106b14: cmp %r11,%rax
0x7f2909106b17: jbe 0x7f2909106b30
0x7f2909106b1d: movabs $0x7f2909004e58,%r11
0x7f2909106b27: cmp %r11,%rax
0x7f2909106b2a: jb 0x7f2909106ba7
0x7f2909106b30: mov %rsp,-0x28(%rsp)
0x7f2909106b35: sub $0x80,%rsp
0x7f2909106b3c: mov %rax,0x78(%rsp)
0x7f2909106b41: mov %rcx,0x70(%rsp)
0x7f2909106b46: mov %rdx,0x68(%rsp)
0x7f2909106b4b: mov %rbx,0x60(%rsp)
0x7f2909106b50: mov %rbp,0x50(%rsp)
0x7f2909106b55: mov %rsi,0x48(%rsp)
0x7f2909106b5a: mov %rdi,0x40(%rsp)
0x7f2909106b5f: mov %r8,0x38(%rsp)
0x7f2909106b64: mov %r9,0x30(%rsp)
0x7f2909106b69: mov %r10,0x28(%rsp)
0x7f2909106b6e: mov %r11,0x20(%rsp)
0x7f2909106b73: mov %r12,0x18(%rsp)
0x7f2909106b78: mov %r13,0x10(%rsp)
0x7f2909106b7d: mov %r14,0x8(%rsp)
0x7f2909106b82: mov %r15,(%rsp)
0x7f2909106b86: movabs $0x7f291f7bd600,%rdi
0x7f2909106b90: movabs $0x7f2909106b30,%rsi
0x7f2909106b9a: mov %rsp,%rdx
0x7f2909106b9d: and $0xfffffffffffffff0,%rsp
0x7f2909106ba1: callq 0x7f291f238dc8 <MacroAssembler::debug64(char*, long, long*)>
0x7f2909106ba6: hlt
0x7f2909106ba7: mov %rsp,%r11
0x7f2909106baa: and $0xfffffffffffffff0,%rsp
0x7f2909106bae: push %rax
0x7f2909106baf: mov %r11,%rax
0x7f2909106bb2: mov 0x48(%rbx),%r11
0x7f2909106bb6: mov 0x8(%rax),%rsi
0x7f2909106bba: mov %rbx,0x248(%r15)
0x7f2909106bc1: mov %rbx,%rax
0x7f2909106bc4: jmpq *%r11
0x7f2909106bc7: mov 0x8(%rsi),%ebx
0x7f2909106bca: shl $0x3,%rbx
0x7f2909106bce: cmp 0x10(%rax),%rbx
0x7f2909106bd2: mov 0x8(%rax),%rbx
0x7f2909106bd6: je 0x7f2909106be1
0x7f2909106bdc: jmpq 0x7f2909105be0
0x7f2909106be1: cmpq $0x0,0x50(%rbx)
0x7f2909106be9: je 0x7f2909106ce4
0x7f2909106bef: jmpq 0x7f2909105be0
0x7f2909106bf4: cmpq $0x0,0x50(%rbx)
0x7f2909106bfc: je 0x7f2909106ce4
0x7f2909106c02: mov %rsp,%r13
0x7f2909106c05: mov (%rsp),%rax
0x7f2909106c09: and $0xfffffffffffffff0,%rsp
0x7f2909106c0d: pushfq
0x7f2909106c0e: sub $0x8,%rsp
0x7f2909106c12: mov %rsp,-0x28(%rsp)
0x7f2909106c17: sub $0x80,%rsp
0x7f2909106c1e: mov %rax,0x78(%rsp)
0x7f2909106c23: mov %rcx,0x70(%rsp)
0x7f2909106c28: mov %rdx,0x68(%rsp)
0x7f2909106c2d: mov %rbx,0x60(%rsp)
0x7f2909106c32: mov %rbp,0x50(%rsp)
0x7f2909106c37: mov %rsi,0x48(%rsp)
0x7f2909106c3c: mov %rdi,0x40(%rsp)
0x7f2909106c41: mov %r8,0x38(%rsp)
0x7f2909106c46: mov %r9,0x30(%rsp)
0x7f2909106c4b: mov %r10,0x28(%rsp)
0x7f2909106c50: mov %r11,0x20(%rsp)
0x7f2909106c55: mov %r12,0x18(%rsp)
0x7f2909106c5a: mov %r13,0x10(%rsp)
0x7f2909106c5f: mov %r14,0x8(%rsp)
0x7f2909106c64: mov %r15,(%rsp)
0x7f2909106c68: sub $0x200,%rsp
0x7f2909106c6f: fxsave64 (%rsp)
0x7f2909106c74: mov %rbx,%rdi
0x7f2909106c77: mov %rax,%rsi
0x7f2909106c7a: callq 0x7f291f3d3a32 <SharedRuntime::fixup_callers_callsite(Method*, unsigned char*)>
0x7f2909106c7f: fxrstor64 (%rsp)
0x7f2909106c84: add $0x200,%rsp
0x7f2909106c8b: mov (%rsp),%r15
0x7f2909106c8f: mov 0x8(%rsp),%r14
0x7f2909106c94: mov 0x10(%rsp),%r13
0x7f2909106c99: mov 0x18(%rsp),%r12
0x7f2909106c9e: mov 0x20(%rsp),%r11
0x7f2909106ca3: mov 0x28(%rsp),%r10
0x7f2909106ca8: mov 0x30(%rsp),%r9
0x7f2909106cad: mov 0x38(%rsp),%r8
0x7f2909106cb2: mov 0x40(%rsp),%rdi
0x7f2909106cb7: mov 0x48(%rsp),%rsi
0x7f2909106cbc: mov 0x50(%rsp),%rbp
0x7f2909106cc1: mov 0x60(%rsp),%rbx
0x7f2909106cc6: mov 0x68(%rsp),%rdx
0x7f2909106ccb: mov 0x70(%rsp),%rcx
0x7f2909106cd0: mov 0x78(%rsp),%rax
0x7f2909106cd5: add $0x80,%rsp
0x7f2909106cdc: add $0x8,%rsp
0x7f2909106ce0: popfq
0x7f2909106ce1: mov %r13,%rsp
0x7f2909106ce4: pop %rax
0x7f2909106ce5: mov %rsp,%r13
0x7f2909106ce8: sub $0x10,%rsp
0x7f2909106cec: mov %rax,(%rsp)
0x7f2909106cf0: mov %rsi,0x8(%rsp)
0x7f2909106cf5: mov 0x38(%rbx),%rcx
0x7f2909106cf9: jmpq *%rcx
0x7f2909106cfb: hlt
0x7f2909106cfc: hlt
0x7f2909106cfd: hlt
0x7f2909106cfe: hlt
0x7f2909106cff: hlt
0x7f2909106d00: or %al,(%rax)
0x7f2909106d02: add %al,(%rax)
0x7f2909106d04: add %al,(%rax)
0x7f2909106d06: add %al,(%rax)
这个上面已经分析过了,这里省略了...
设置完成了i2i
(gdb) p m._value
$33 = (Method *) 0x7f2908c00678
(gdb) p * m._value
$34 = (Method) {
<Metadata> = {
<MetaspaceObj> = {<No data fields>},
members of Metadata:
_vptr.Metadata = 0x7f291fcf1b90 <vtable for Method+16>,
_valid = 0
},
members of Method:
_constMethod = 0x7f2908c00588,
_method_data = 0x0,
_method_counters = 0x0,
_access_flags = {
_flags = 9
},
_vtable_index = -3,
_method_size = 12,
_intrinsic_id = 0 '\000',
_jfr_towrite = 0 '\000',
_caller_sensitive = 0 '\000',
_force_inline = 0 '\000',
_hidden = 0 '\000',
_dont_inline = 0 '\000',
_compiled_invocation_count = 0,
_i2i_entry = 0x7f290901e2e0 "H\213S\020\017\267J*\017\267R(+с\372\366\001",
_adapter = 0x7f29180aee10,
_from_compiled_entry = 0x7f2909106bf4 "H\201{P", //就是这里设置了compiled_entry取值是从adapter中拿到的
_code = 0x0,
_from_interpreted_entry = 0x7f290901e2e0 "H\213S\020\017\267J*\017\267R(+с\372\366\001",
static extra_stack_entries_for_jsr292 = 1
}
循环第2个
(gdb) p * m._value._constMethod
$35 = {
<MetaspaceObj> = {<No data fields>},
members of ConstMethod:
_fingerprint = 9223372036854775808,
_constants = 0x7f2908c00080,
_stackmap_data = 0x0,
_constMethod_size = 7,
_flags = 1,
_code_size = 6,
_name_index = 10,
_signature_index = 11,
_method_idnum = 2,
_max_stack = 1,
_max_locals = 0,
_size_of_parameters = 0,
static MAX_IDNUM = 65534,
static UNSET_IDNUM = 65535
}
查看_name_index = 10, 知道是clint方法
设置之前
(gdb) p this
$37 = (Method * const) 0x7f2908c003b0
(gdb) p * this
$38 = (Method) {
<Metadata> = {
<MetaspaceObj> = {<No data fields>},
members of Metadata:
_vptr.Metadata = 0x7f291fcf1b90 <vtable for Method+16>,
_valid = 0
},
members of Method:
_constMethod = 0x7f2908c00378,
_method_data = 0x0,
_method_counters = 0x0,
_access_flags = {
_flags = 8
},
_vtable_index = -3,
_method_size = 12,
_intrinsic_id = 0 '\000',
_jfr_towrite = 0 '\000',
_caller_sensitive = 0 '\000',
_force_inline = 0 '\000',
_hidden = 0 '\000',
_dont_inline = 0 '\000',
_compiled_invocation_count = 0,
_i2i_entry = 0x0,
_adapter = 0x0,
_from_compiled_entry = 0x0,
_code = 0x0,
_from_interpreted_entry = 0x0,
static extra_stack_entries_for_jsr292 = 1
}
第3个循环
(gdb) p * this
$40 = (Method) {
<Metadata> = {
<MetaspaceObj> = {<No data fields>},
members of Metadata:
_vptr.Metadata = 0x7f291fcf1b90 <vtable for Method+16>,
_valid = 0
},
members of Method:
_constMethod = 0x7f2908c00410,
_method_data = 0x0,
_method_counters = 0x0,
_access_flags = {
_flags = 1
},
_vtable_index = -3,
_method_size = 12,
_intrinsic_id = 0 '\000',
_jfr_towrite = 0 '\000',
_caller_sensitive = 0 '\000',
_force_inline = 0 '\000',
_hidden = 0 '\000',
_dont_inline = 0 '\000',
_compiled_invocation_count = 0,
_i2i_entry = 0x0,
_adapter = 0x0,
_from_compiled_entry = 0x0,
_code = 0x0,
_from_interpreted_entry = 0x0,
static extra_stack_entries_for_jsr292 = 1
}
(gdb) p * this._constMethod
$41 = {
<MetaspaceObj> = {<No data fields>},
members of ConstMethod:
_fingerprint = 9223372036854775808,
_constants = 0x7f2908c00080,
_stackmap_data = 0x0,
_constMethod_size = 14,
_flags = 5,
_code_size = 15,
_name_index = 17,
_signature_index = 18,
_method_idnum = 1,
_max_stack = 2,
_max_locals = 3,
_size_of_parameters = 3,
static MAX_IDNUM = 65534,
static UNSET_IDNUM = 65535
}
_name_index = 17, 查看常量池是init方法
设置之后
$46 = (Method *) 0x7f2908c00480
(gdb) p * mh._value
$47 = (Method) {
<Metadata> = {
<MetaspaceObj> = {<No data fields>},
members of Metadata:
_vptr.Metadata = 0x7f291fcf1b90 <vtable for Method+16>,
_valid = 0
},
members of Method:
_constMethod = 0x7f2908c00410,
_method_data = 0x0,
_method_counters = 0x0,
_access_flags = {
_flags = 1
},
_vtable_index = -3,
_method_size = 12,
_intrinsic_id = 0 '\000',
_jfr_towrite = 0 '\000',
_caller_sensitive = 0 '\000',
_force_inline = 0 '\000',
_hidden = 0 '\000',
_dont_inline = 0 '\000',
_compiled_invocation_count = 0,
_i2i_entry = 0x7f290901e2e0 "H\213S\020\017\267J*\017\267R(+с\372\366\001",
_adapter = 0x7f29180b0048, //这个每个方法都不一样的
_from_compiled_entry = 0x7f2909125a21 "H\201{P",
_code = 0x0,
_from_interpreted_entry = 0x7f290901e2e0 "H\213S\020\017\267J*\017\267R(+с\372\366\001",
static extra_stack_entries_for_jsr292 = 1
}
地4个循环
(gdb) p * this
$52 = (Method) {
<Metadata> = {
<MetaspaceObj> = {<No data fields>},
members of Metadata:
_vptr.Metadata = 0x7f291fcf1b90 <vtable for Method+16>,
_valid = 0
},
members of Method:
_constMethod = 0x7f2908c004e0,
_method_data = 0x0,
_method_counters = 0x0,
_access_flags = {
_flags = 1
},
_vtable_index = -3,
_method_size = 12,
_intrinsic_id = 0 '\000',
_jfr_towrite = 0 '\000',
_caller_sensitive = 0 '\000',
_force_inline = 0 '\000',
_hidden = 0 '\000',
_dont_inline = 0 '\000',
_compiled_invocation_count = 0,
_i2i_entry = 0x0,
_adapter = 0x0,
_from_compiled_entry = 0x0,
_code = 0x0,
_from_interpreted_entry = 0x0,
static extra_stack_entries_for_jsr292 = 1
}
执行之后
(gdb) p *m._value
$55 = (Method) {
<Metadata> = {
<MetaspaceObj> = {<No data fields>},
members of Metadata:
_vptr.Metadata = 0x7f291fcf1b90 <vtable for Method+16>,
_valid = 0
},
members of Method:
_constMethod = 0x7f2908c004e0,
_method_data = 0x0,
_method_counters = 0x0,
_access_flags = {
_flags = 1
},
_vtable_index = -3,
_method_size = 12,
_intrinsic_id = 0 '\000',
_jfr_towrite = 0 '\000',
_caller_sensitive = 0 '\000',
_force_inline = 0 '\000',
_hidden = 0 '\000',
_dont_inline = 0 '\000',
_compiled_invocation_count = 0,
_i2i_entry = 0x7f290901e2e0 "H\213S\020\017\267J*\017\267R(+с\372\366\001",
_adapter = 0x7f29180aee10,//这个值不同呢
_from_compiled_entry = 0x7f2909106bf4 "H\201{P",
_code = 0x0,
_from_interpreted_entry = 0x7f290901e2e0 "H\213S\020\017\267J*\017\267R(+с\372\366\001",
static extra_stack_entries_for_jsr292 = 1
}
这里就比较清楚了,这个过程,,其中之前不理解的是栈帧重用,这里将main方法的操作数栈,作为了init方法的arg1,arg2,等本地变量表